Soal Turunan 2 : Aljabar

Setelah mencoba soal turunan bagian pertama, mari kita coba latihan soal turunan dan pembahasan soal turunan yang lain yuk ……..jangan lupa rumus-rumus turunan kemarin yah !!!

  1. Jika $g(x)=\left ( 5-3x \right )^{10}$ maka $g ‘(2) = $ ….

    A. -30

    B. -10

    C. 30

    D. 60

    E. 90

    Jawab :

    • misal $u=5-3x$ maka $u'=-3$ $n=10$

    • kita pakai aturan rantai sehingga :

  2. Jika $f(x)=x^3-\frac{x}{x^2-1}$ maka $f ‘(x) = $…

    A. $3x^2+\frac{x^2+1}{(x^2-1)^2}$

    B. $3x^2-\frac{x^2-1}{(x^2-1)^2}$

    C. $x^2+\frac{3x+1}{(x^2-1)^2}$

    D. $x^2-\frac{3x+1}{(x^2-1)^2}$

    E. $3x^2-\frac{3x+1}{(x^2-1)^2}$

    Jawab :

    • terdapat dua suku yang harus diturunkan, kita turunkan suku yang pertama secara langsung dan suku yang kedua menggunakan rumus ${\color{Red} y=\frac uv}\;\;\; maka\;\;\;{\color{Red} y'=\frac{u'v-v'u}{v^2}}$

    • perhatikan suku kedua misalkan :

      maka

  3. Turunan pertama dari $\frac{(x+2)(x+1)}{(x+3)}$ adalah …..

    A. ${y}'=\frac{x^2+9x+7}{x^2+9}$

    B. ${y}'=\frac{x^2+6x+11}{x^2+6x+9}$

    C. ${y}'=\frac{x^2+6x+7}{x^2+6x+9}$

    D. ${y}'=\frac{x^2+9x+11}{x^2+6x+9}$

    E. $\frac{x^2+6x+11}{x^2+9}$

    Jawab :

    • untuk model soal yang seperti ini kita kalikan pembilangnya sehingga menjadi bentuk kuadrat, didapat $y=\frac{x^2+3x+2}{x+3}$ baru kita gunakan ${\color{Red} y=\frac uv}\;\;\;maka\;\;\;{\color{Red} y'=\frac{u'v-v'u}{v^2}}$

    • misalkan

    • maka :

  4. Diketahui $y=\sqrt{3-4x}$ maka $ \frac{\partial y}{\partial x}=$ ….

    A. $\frac{1}{2\sqrt{3-4x}}$

    B. $\frac{1}{\sqrt{3-4x}}$

    C. $\frac{2}{\sqrt{3-4x}}$

    D. $\frac{-1}{\sqrt{3-4x}}$

    E. $\frac{-2}{\sqrt{3-4x}}$

    Jawab :

    • nyatakan y dalam bentuk pangkat menjadi $y=\left ( 3-4x \right )^{\frac 12}$

    • nah…ingat kita pakai aturan rantai

  5. Jika $f(3+2x)=4-2x+x^2$ maka $f ‘ (1)$ = …

    A. -4

    B. -2

    C. -1

    D. 0

    E. $\frac{1}{2}$

    Jawab :

    • masih ingatkah materi komposisi fungsi ….???
    • kita misalkan :

    • subitusikan ke $f(3+2x)=4-2x+x^2$ menjadi :

    • baru kita turunkan tiap sukunya

Selamat belajar…..yang semangat yah !!!!