Statistika 2

Materi statistika 2 merupakan kelanjutan dari Statistika 1, sebelumnya telah kita punya rangkuman rumus statistika dan contoh soal pada data tunggal, nah sekarang kita akan berlatih contoh soal data berkelompok yuk…

Diketahui data sebagai berikut :

Nomorfi
10 – 143
15 – 196
20 – 249
25 – 298
30 – 344

Tentukanlah rataan, median, modus, kuartil pertama ($Q_1$) dan desil ke delapan ($D_8$) !

jawab:

  1. Untuk mencari rataan kita buat kolom bantuan $x_i$ yaitu nilai tengah dan $f_i.x_i$ sebagai berikut :

    Nomor$fi$$xi$$fi.xi$
    10 – 1431236
    15 – 19617102
    20 – 24922198
    25 – 29827216
    30 – 34432128
    $\sum$30 680

    \begin{array}{rcl}\bar{x} & = & \frac{\sum f_{i}.x_{i}}{\sum f_i}\\ & = & \frac{680}{30}\\ & = & 22,67\end{array}

  2. untuk mencari median kita buat kolom tambahan $f_k$ yaitu frekuensi kumulatif sebagai berikut :

    Nomor$fi$$fk$
    10 – 1433
    15 – 1969
    20 – 24918
    25 – 29826
    30 – 34430
    $\sum$30 

    kita tentukan kelas median terlebih dulu, $\frac n2=\frac{30}{2}=15$ (lihat $f_{k}$-nya) data ke $15$ terletak di kelas ke $3$ dimana:

    $T_B=20-0,5=19,5$

    $i=5$

    $f_k=9$ ingat $f_k$ disini adalah frekuensi kumulatif sebelum kelas ke $3$

    $f_{Me}=9$ lihat $f_i$ kelas ke $3$

    maka :

    \begin{array}{rcl}Me & = & T_B+ \frac {\frac {n}{2}-f_{k}}{f_{Me}}.i\\ & = & 19,5+\frac{15-9}{9}.5\\ & = & 19,5+\frac {6}{9}.5\\ & = & 19,5+3,33\\ & = & 22,83\end{array}

  3. untuk mencari modus, tidak dibutuhkan kolom tambahan sehingga perhatikan tabel soal

    Nomor$fi$
    10 – 143
    15 – 196
    20 – 249
    25 – 298
    30 – 344
    $\sum$30

    kita tentukan kelas modus terlebih dulu, kelas dengan frekuensi terbesar yaitu kelas ke $3$

    $T_B=20-0,5=19,5$

    $i=5$

    $d_1=9-6=3$ ingat selisih kelas ke $3$ dengan kelas ke $2$

    $d_2=9-8=1$ ingat selisih kelas ke $3$ dengan kelas ke $4$

    maka

    \begin{array}{rcl}Mo & = & T_B+\frac{d_{1}}{d_{1}+d_{2}}.i\\ & = & 19,5+\frac{3}{3+1}.5\\ & = & 19,5+\frac{3}{4}.5\\ & = & 19,5+3,75\\ & = & 23,25\end{array}

  4. untuk mencari kuartil pertama kita pakai tabel untuk mencari median

    Nomor$fi$$fk$
    10 – 1433
    15 – 1969
    20 – 24918
    25 – 29826
    30 – 34430
    $\sum$30 

    kita tentukan kelas $Q_1$ terlebih dulu, $\frac {i.n}{4}=\frac{1.30}{4}=7,5$ , (lihat $f_{k}$ -nya) data ke 7,5 terletak di kelas ke $2$ dimana:

    $T_B=15-0,5=14,5$

    $i=5$

    $f_k=3$ ingat $f_k$ disini adalah frekuensi kumulatif sebelum kelas ke $2$ (kelas $Q_1$)

    $f_{Q1}=6 lihat f_i$ kelas ke $2$

    maka

    \begin{array}{rcl}Q_1 & = & T_B+\frac{\frac {i.n}{4}-f_k}{f_Q}.i\\ & = & 14,5+\frac{7,5-3}{6}.5\\ & = & 14,5+\frac{4,5}{6}.5\\ & = & 14,5+3,75\\ & = & 18,25\end{array}

  5. untuk mencari desil ke $8$ kita pakai tabel untuk mencari median

    Nomor$fi$$fk$
    10 – 1433
    15 – 1969
    20 – 24918
    25 – 29826
    30 – 34430
    $\sum$30 

    kita tentukan kelas $D_8$ terlebih dulu,$ \frac{i.n}{10}=\frac{8.30}{10}=24$ ,(lihat $f_{k}$-nya) data ke $24$ terletak di kelas ke $4$ dimana:

    $T_B=25-0,5=24,5$

    $i=5$

    $f_k=18$ ingat $f_k$ disini adalah frekuensi kumulatif sebelum kelas ke $4$ (kelas $D_8$)

    $f_{D8}=8$ lihat $f_i$ kelas ke $4$

    maka

    \begin{array}{rcl}D_8 & = & T_B+\frac{\frac {i.n}{10}-f_k}{f_D}.i\\ & = & 24,5+\frac{24-18}{8}.5\\ & = & 24,5+\frac{6}{8}.5\\ & = & 24,5+3,75\\ & = & 28,25\end{array}

oke…selamat mencoba….

Comments